Sasusuan ni pitaguras

kemasi testwiki
kemasi ta 2023年2月10日 (sikalima qadav na tamiciyuan) 22:03 a patje imported>YiFeiBot a paljaljenguanguaq ta pinapapenepenetjan a (Bot: Migrating 1 langlinks, now provided by Wikidata on d:q11518
(sikamaretimaljiyan) ← paljaljenguanguaq ta pinapapenepenetjan katjaisangas | tjaljavaquaquan a pinapaljaljenguanguaq ta pinapapenepenetjan (sikamaretimaljiyan) | yasuljur ta paljaljenguanguaq a pinapapenepenetjan→ (sikamaretimaljiyan)
跳至導覽 跳至搜尋
sasusuan ni pitaguras

madjaludjalu manu pazangal a pinasusuan mavan aicu sasusuan ni pitaguras(畢氏定理) (Pythagorean theorem) a sikinemeneman tua vavuduan/tatideqan nua mareka vecik. makaya sinivecik sa papukeljang a a katua b tua drusa a gidigidian nua ta tjelu a putung, sa tja sinivecik c taza calisilisian. a tja kineljang aicu a sasusuan ni pitaguras mavan a sisupusupu sa paseljang matu:[1]

a2+b2=c2.

pinapungadan

aicu a sususuan a pinapungadan ti piaguras a nasemupu a segeris a kinasicuayan. pasusangas a 1,000 a cavilj tazua, izua za sisupusupu a kineljangan nua caucau i kacauan. ljakua aicu a tja sinipapukeljang a ngadan taicu a sasusuan ni pitaguras tucu.

sinisupuan

nu namapacunan a sinivecikan a C a tja sipakeljang tua cacalisian nua ta tjelu a putung, sa pakatua zuma a gidigidian nua za tjelu a putung, izua za sinivecikan a A katua B a sipakeljang, mavan aicu a tja sinipakeljangan a sinisupuan nua sasusuan ni pitaguras:

a2+b2=c2.

nu namasan aicu a tja kineljangan a laladruqan nua A katua B, manu aicu a tja sisupusupu:

c=a2+b2.

nu nakemeljang itjen ta laladruqan nua C a cacalisian katua tailj a gidigidian (A ka na ika B), manu aicu a tja sisupusupu tua laladruqan nua zumanga a gidigidian:

a=c2b2

ka na ika mavan aicu a maumalj a sinisupuan:

b=c2a2.

saka, aicu a tja kineljang tu nu kemeljang itjen ta laladruqan nua matjadrusa a gidigidian nua ta tjelu a putung, maqatitjen a semupu sa kemeljang tua laladruqan nua sikamasantjelulj a gidigidian.

pinakasaluan

sipatjavat tua pakasalu

a tja sipakasalusalu a masan sepatj a tjelu a putung a pinapeseljang. sa paseljang itjen tua aicu a tjelu a putung itua ta sepatj a putung matu tja mapacuanan taicu a vecik i pasanavalj. a tja sipatjavatan aicu C a tja sipakeljang tua gidigidian nua za sepatj a putung.[2] nu pasuvililj, izua tjaqaca a sepatj a putung tuki tja kineljang aicu a a + b aza gidigidian, saka sikeljangan tua tatideqan naza sepatj a putung aza sisupuan a (a + b)2. penaqulid a patjeseljaseljang a tja mapacunan a laludraqan a cacalisian nua matjasepatj a tjelu a putung a katagiljan tua laladruqan a gidigidian nua sepatj a putung nu tjaivililj. a tja sipatjavatjavat mavan cu a C tua za laludraqan.

(b+a)2=c2+4ab2=c2+2ab,

a pasuvililj avan cu a masan italj a sisupuspu:

c2=(b+a)22ab=b2+2ab+a22ab=a2+b2.

inka maljian mavan cu a masan italj a sipakasalusalu aza pinaseljangan a masan sepatj a tjelu a putung a pasanavalj (right triangle). a tja sipatjavat a a, b katua c taza gidigidian. pinitaladj aza sepatj a tjelu a putung tua ta sepatj a putung. a tja sipatjavat tua laladruqan a gidigidian nua za sepatj a putung a c.[3] ika maljian a tatideqan nua za tjelu a putung tua tatideqan a 12ab. saka tja sinipapukeljang a ba tua gidigidian nua masan italj a kedrian a sepatj a putung; a tja kineljang a (ba)2 tua tatideqan nua za sepatj a putung. a tjaivililj a tja sipapukeljang tua tatideqan nua tjaqaca a sepatj a putung aicu a sisupusupu sa paseljang matu:

(ba)2+4ab2=(ba)2+2ab=b22ab+a2+2ab=a2+b2.

manu tja kineljang taicu a c a laladruqan a gidigidian nua sepatj a putung; aza c2 a tja sipapukeljang tua tatideqan nua za sepatj a putung. saka, mavan cu a tja sisupusupu sa paseljang:

c2=a2+b2.

kaizuan

  1. Judith D. Sally; Paul Sally (2007). "Chapter 3: Pythagorean triples". Roots to research: a vertical development of mathematical problems. American Mathematical Society Bookstore. p. 63. ISBN 978-0-8218-4403-8.
  2. Alexander Bogomolny. "Cut-the-knot.org: Pythagorean theorem and its many proofs, Proof #4". Cut the Knot. Retrieved 4 November 2010.
  3. Alexander Bogomolny. "Cut-the-knot.org: Pythagorean theorem and its many proofs, Proof #3". Cut the Knot. Retrieved 4 November 2010.